
Adaptive Companions in FPS Games

Jonathan Tremblay
School of Computer Science
McGill University, Montréal

Québec, Canada
jtremblay@cs.mcgill.ca

Clark Verbrugge
School of Computer Science
McGill University, Montréal

Québec, Canada
clump@cs.mcgill.ca

ABSTRACT
Non-player characters that act as companions for players
are a common feature of modern games. Designing a com-
panion that reacts appropriately to the player’s experience,
however, is not a trivial task, and even current, triple-A ti-
tles tend to provide companions that are either static in be-
haviour or evince only superficial connection to player activ-
ity. To address this issue we develop an adaptive companion
that analyses the player’s in-game experience and behaves
accordingly. We evaluate our adaptive companion in differ-
ent, non-trivial scenarios, as well as compare our proposed
model to a straightforward approach to adaptivity based on
Dynamic Difficulty Adjustment (DDA). The data collected
demonstrates that the adaptive companion has more influ-
ence over the player’s experience and that there exists an
orthogonality between our companion adaptivity and the
more traditional combat/health scaling approaches to dif-
ficulty adjustment. Using adaptive companions is a step
forward in offering meaningful and engaging games to play-
ers.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—product metrics;
K.8.0 [Personal Computing]: General—games

General Terms
Design and Measurement

Keywords
Artificial Intelligence, Video Games

1. INTRODUCTION
In First-Person Shooters (FPS) and Third-Person Shoot-

ers (TPS) the player’s relationship with team-mate or com-
panion Non-Player Characters (NPCs) is intricately linked
to the gameplay, challenge, narrative and experience. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

companion’s goal is to help the player accomplish in-game
goals, simulating the effect of actual co-operative gameplay.
Interesting challenges and problems arise from this situa-
tion, however, and even in AAA games we frequently find
that companions are overly superficial; they may co-exist
with the player, but they often fail to appropriately cooper-
ate [2], reducing their value to players, and interfering with
immersion. In a fundamental sense, these problems arise
from the companion’s lack of understanding of the game
world and the player’s dynamic, changing experience.

In this work, we investigate a novel approach to behavioural
adaptivity of companions. In our design the companion is
given a basic understanding of the player’s experience and
uses that knowledge to change its behaviour accordingly. In
order to validate our adaptive companion, we developed a
prototype TPS game with a basic level wherein the player is
expected to interact with this companion. An Artificial In-
telligence (AI) was also implemented to act as a player when
running tests and gathering player-companion metrics. We
show that using our approach to companion adaptivity al-
lows the companion better control over the player’s game
experience than a classic game-industry approach to NPC
design. We also demonstrate a parallel between behavioural
adaptivity and difficulty adaptivity, and how behavioural
adaptivity can be embedded in narrative wherein DDA is
lacking. Specific contributions of this work include:

• We define a novel, online adaptive model for companions
in war games, enabling companions to change behaviour
according to basic knowledge of the player’s experience.

• We develop a set of metrics to quantify companion perfor-
mance, including game intensity, as well as novel measures
such as personal space, and combat load ratio.

• Using a simple but representative game environment de-
veloped in Unity, we compare our adaptive design to a
companion AI derived from the popular Skyrim game, and
also to traditional attribute-scaling approaches to DDA.
Our approach shows measurable improvement, and indi-
cates that complex adaptivity can be used as an orthogonal
adjunct to DDA.

2. BACKGROUND
Our focus in this paper is on real-time companion NPCs

in war games. Below we present background information
on companion design in the mainstream game industry. Of
particular interest is whether and how interaction with an
AI companion affects player experience. Note that detailed
related work is presented later, in Section 5.



2.1 War Game Companion
Use of companion AI in war games and combat scenarios

is relatively common in current games, enabling frequent,
complex group-battle scenarios, without the potential te-
dium of detailed manual control of several characters. There
are perhaps two major trends in the video game industry
in this respect. The first is to provide fully autonomous
companions that are expected to demonstrate appropriate
behaviour without player input or control. A second com-
mon approach is to give limited, high-level control over the
companion’s behaviour to the player.

Fully Autonomous Companions. Games like Skyrim
(2011) from Betheseda Softworks or Left 4 Dead (2008-2009)
from Valve provide a companion that is expected to behave
as a relatively independent, if subservient character in the
gameplay. Skyrim, for instance, gives the player the option
to acquire a companion, who then closely follows the player
throughout the virtual world. The companion’s tasks are to
help the player in combat, carry objects the player cannot
hold (weight limit), and add depth to the narrative through
(limited) interaction.

In combat, a non-adaptive companion AI is frequently
problematic for players [6]. The player often has a variety
of combat options; she may, for example, use close-range
or long-range combat weapons, or choose to directly engage
enemies or sneak around enemies to perform a silent kill or
avoid combat. In such cases the companion would ideally
help the player in their intent—using matching (or comple-
mentary) close-range or long-range combat weapons, or by
otherwise choosing a particular tactic which best comports
with player actions. Unfortunately, failure of the companion
to behave properly in combat is a frequent player lament.
Taking Skyrim as an example, the companion will establish
line-of-sight to the enemy even if it means walking in the
front of the player when she is using range weapons, and
so resulting in frequent “friendly fire” incidents, and tends
to aggressively engage enemies in combat, causing a sneak-
attack or combat avoidance strategy to fail [6]. Such unsat-
isfying and immersion-destroying experiences are common,
and have also been noted in the FPS series Left 4 Dead.

Semi-autonomous Companions. Whereas Skyrim and
Left 4 Dead greatly limit player control over companion be-
haviour, other games such as the war/combat game Army
of two (2008-2010) from Electronic Arts or the RPG Dragon
Age II from Bioware allow the player some control over com-
panion AI behaviour.

In Dragon Age II this control is very high-level, consist-
ing primarily of switching companions between aggressive,
normal, and defensive combat modes. Army of Two gives
slightly more complex control: when engaging in combat
the player can give different orders to the companions, such
as hold position, follow me and push attack. These orders
provide high-level direction to companion behaviour; when
the companion is asked to hold position, for example, it will
shoot at every enemy coming towards its position and will
also follow the player at a distance, whereas when the com-
panion is asked to follow me, they will remain close to the
player at all times and shoot at every enemy on sight. When
the companion is asked to push attack, they will approach
enemies on their own to engage in combat and will only move
back to the player when she is too far away.

The different behaviours in such games can be seen as an

attempt to improve player experience by letting the player
inform the companion AI of her high-level intent. Draw-
backs exist, however, both in the necessity of defining useful
and appropriate high-level behaviours, and in requiring the
player to perform meta-game actions during what is oth-
erwise what is one of the more immersive parts of game
interaction.

2.2 Player Experience
Companions are an essential part of the player experience,

ensuring the player has fun and has a sense of immersion in
the game world. In order to explain fun in games, schol-
ars use the notion of flow described as the mental state in
which a person playing a game is fully involve and immersed.
Within flow there is an underlying structure to challenge
that is of great interest for game developers. If a game is
too hard for the player’s skill level, she will endure anxiety.
Alternatively, if the game is too easy for her skill level, she
will experience boredom. For a player to enjoy a game she
needs a challenge that suits her skill level. The challenge
has to be epsilon bigger than her skills, in order to ensure
flow [4].

According to Booth, a good game experience also comes
from well constructed game intensity pacing [3]. Pacing
refers to the game having fluctuations in intensity, present-
ing periods of low, medium, and high intensity at various
points in the game. Overly lengthy periods of low or high
intensity gaming are not interesting for the player as she
might get bored or frustrated respectively [14].

A direct advantage to use of companions in games is in
their ability to provide unique social experience for the player.
For example, in Skyrim it is possible for the player to marry
her companion. This allows for a layer of narrative depth
where the player defines an intimate bound with their com-
panion. Peter Molyneux designed Fable 2 around this par-
ticular idea, where the player is accompanied by her dog and
is expected to develop a loving relationship with it [5].

It is not common to find companions that adapt their be-
haviour to the player’s behaviour in AAA games. In general
the player will be given two options. The first is that they
will have to explicitly tell the companion what to do, which
removes any representation of the companion’s will or free-
dom [13]. Alternatively, the players will have to live with a
behaviour that might not respect their gameplay style and
will consequently break their in-game immersion [14].

3. METHOD
This section explores the different structures needed in

order to compare an adaptive companion to a modern, non-
controllable companion model. For this we need a suitable
game context for experimentation, an autonomous compan-
ion representative of that used in current AAA titles, a full
design for our adaptive model, as well as a suite of metrics
for quantitative evaluation.

3.1 Game Prototype
In order to test our approach to adaptivity, a simple TPS

(prototype) was developed using Unity 3D pro1. The pur-
pose of this prototype was to have an open platform with
which to test companions and to gather information about
their performance. The in-game goal of the player is to

1http://unity3d.com/



gather blue boxes as seen at the top-left of Figure 1. The
challenge arises from enemies; they walk around in a pre-
determined path and engage in shooting combat with the
player or the companion, if either are seen. If the player or
companion runs away from them, they will chase them to
their last known position. In Figure 1 two enemies can be
seen dressed in black, the companion approaches from the
right, and the player is bottom center. The companion’s
goal is to help the player accomplish the in-game challenge
by shooting at enemies and defending the player. The non-
controllable companion is further described in Section 3.2
and the adaptive companion is deconstructed in Section 3.3.

Figure 1: Simulation game used for testing

The game does not involve any resource management.
The player has infinite ammunition and there is no way
to recover health. In doing so, issues of adaptation un-
der resource management such as ammo, health packs, etc.,
were removed in order to focus on the behaviour of the com-
panion. Further research will be to consider integration of
resources into the problem space, but since player dissat-
isfaction with companions often concentrates on companion
movement and engagement tactics, our prototype is directed
primarily at these concerns.

In order to facilitate testing, an AI player was designed to
automatically play the game. The AI player walks around
collecting blue boxes. If it sees an enemy it will engage
in combat using a pattern of shooting then dodging to the
left or the right (all agents use this core strategy). This AI
player thus represents a classic human player, who attempts
to clean out the level as rapidly as possible by engaging in
every combat and moving to the next goal without pausing.

3.2 Base Companion
In order to validate our adaptive model, a base companion

was developed. This companion is inspired by Skyrim and so
represents the game industry standards in non-controllable
companion design. Figure 2 shows the behaviour tree [8, 11,
12] outline for the base companion’s behaviour.

The base companion offers standard companion behaviour
but it does not take into consideration the player’s in-game
experience. The behaviour tree in Figure 2 is translated as
follows. The companion will fight with any enemy it sees.
If the companion knows about the enemy, it will move to
the last known enemy position (Move to Enemy). When
the player is immobile, the companion will pick a random
position near the player and move to that position every five
to ten seconds. If the player is moving, the companion will
follow her around.

?

??

See & 
Shoot

Move to 
Enemy

→ 

Not 
Moving

Move 
Around

Follow 
Player

Figure 2: Base companion behaviour trees

3.3 Adaptive Companion
Adaptivity in modern computer games happens in multi-

ple forms. The approach used in this paper was inspired by
a component of the DDA system in Left 4 Dead. They used
a game intensity metric to tailor the game experience to the
player’s needs [3], e.g. if the game intensity is too high,
the DDA system will remove enemies from the map to tem-
per the difficulty. Our adaptive companion also makes use
of intensity in order to switch between different behaviours.
The adaptive companion uses three distinct behaviours: cau-
tious, support and aggressive.

3.3.1 Cautious
This behaviour was designed to respect the player choices

when it is time to enter combat. The companion will respect
if the player is sneaking around as it will not attack enemies
until the player decides it is time to do so. The cautious
behaviour tree in Figure 3 A) is translated as follows. The
companion will not engage in combat with any enemies it
sees. If it sees an enemy it will try to move away to a hidden
location near the player, and will only start fighting if the
player is already in combat. In this case the companion will
move to the player’s left or right if it cannot see the enemy.
The companion will otherwise only move toward the player
if they cannot see the player or are too far away.

3.3.2 Support
This behaviour was designed to develop a close companion

to offer great support at any time and to be efficient when
in combat. The support behaviour tree in Figure 3 B) is
translated as follows. The companion will enter combat with
any enemies it can see, and will also chase an enemy to its
last known position. If the player is in combat and the
companion cannot see the enemy, then it will try to move to
player’s left or right. If there is no combat the companion
will closely follow the player.

3.3.3 Aggressive
This companion was designed to remove combat load from

the player. The aggressive behaviour tree in Figure 3 C) is
translated as follows. The companion will engage in combat
with any enemies it sees, and will also chase an enemy to its
last known position. If there are no enemies, the companion
will explore the level to find enemies, only stopping if they
are too far away from the player.

3.3.4 Adaptation
The different sub-behaviours of our AI are mixed within

the same behaviour tree using the structure shown in Fig-
ure 4. This design makes use of the intensity metric we
define in the next section; when the game intensity is over a



?

→

Combat
Mode ?

? Player
Left Right

See &
Shoot

Move to
Enemy

→

See
Enemies

Move
Hidden
Player

?

Avoid
Player ?

Follow
Distance

Follow
Sight

?

?

See &
Shoot

Move to
Enemy

?

Stop too
Far

Explore

?

?

? Player
Left Right

See &
Shoot

Move to
Enemy

?

Avoid
Player ?

Follow
Distance

Follow
Sight

?

See &
Shoot

Move to
Enemy

A) B) C)

Figure 3: A) Cautious, B) Support, and C) Aggresive behaviour trees

?

Intensity 
> X

→ 

Aggre-
ssive

Intensity 
> Y

→ 

Support

Cautious

Figure 4: Adaptive behaviour trees

threshold, X, the adaptive companion will pick the aggres-
sive behaviour to aggressively engage the enemy and so try
and reduce the intensity. In the situation where the inten-
sity is moderate, over threshold Y and assuming Y < X,
the companion will support the player, trying to share the
combat load more evenly with the player by switching to
a support behaviour. When the game intensity is low, it
assumes that the player is in control. In this case the com-
panion uses the cautious behaviour, letting the player take
on the bulk of the combat role and decisions. Note that
this design embeds adaptivity in a relatively simple, static
behaviour tree model. It would also be possible to vary be-
haviour by creating or modifying trees at runtime; e.g., in
the game Driver: San Francisco behaviour tree structure
was modified dynamically by rearranging child nodes based
on hints [12].

As expressed in Section 2.1, the companion is also there
to generate narrative value. Using the presented adaptive
model and communication, it is possible to note that there
are intense sections where the companion could acknowledge
its behaviour and game intensity. For example, after a long
and intense combat, the companion could say: “It was a
rough one, but we survived!” or during combat say: “I am
going to push harder on them, they can’t have us!” as it is
switching to a more aggressive behaviour. This kind of dia-
logue gives life to the companion compared to predetermined
dialogues.

Overall the adaptive companion was designed to have a
better understanding of the right behaviour to use in differ-
ent game intensity situations. The companion offers a more
complete behaviour to the player than the base companion
presented in Section 3.2.

3.4 Metrics
In order to develop a meaningful companion, it was impor-

tant to develop quantifiable metrics that express its value.
The metrics developed here are intended to relate to the
player’s in-game experience and performance, as well as the
companion’s performance.

3.4.1 Player’s Experience and Performance
In order to represent the player’s experience we developed

a game intensity metric based on Valve’s DDA system used
in Left 4 Dead [3], as well as previous work from the McGill
Game Lab [1]. Game intensity is defined to be a real number,
0 ≤ i ≤ 1. The intensity mainly varies according to the
amount of health lost between two intensity updates, 4h.
In Equation 1 the sigmoid function is used to update the
game intensity, along with further parametrization chosen
to limit the value of an incremental update.

i =
1

e4h
(1)

The game intensity is also influenced by the distance squared
to the companion when it gets shot, and the distance to the
enemy squared when the enemy is killed. The game intensity
decreases linearly over time when there is no combat. This
representation helps quantify what the player is experiencing
due to game combat.

A second metric, called personal space (PS), was designed
to help determine how the player senses her companion. A
companion should usually be close enough to a player for the
player to be aware of the companion, more so during combat,
but not so close as to interfere with movement or intended
actions. We experimented with a few versions of this metric;
here we use a simple design that just measures the number
of times a companion enters a given (overly close) radius
around the player.

In order to represent the cooperation between the player
and her companion, a ratio, R was used, given the Player’s
(PHE) and Companion’s (CHE) Health at the end of the
level. The ratio is then calculated: R = 1 − (PHE/CHE).
As R approaches zero, the player and companion share an
equivalent combat load. If the ratio is positive, it means the
player had the most intense combat. If the ratio is negative
it means that the companion did more work.

To measure the player’s performance in-game, common
metrics like number of kills (PK), average health, average
game intensity (GI), number of successful hits (PHi & CHi)
etc. were also used. Along with intensity these simple met-
rics show how the player interacted with the game, and can



also show how much the companion influenced the player’s
gameplay and experience.

3.4.2 Companion’s Performance
Companion performance can be measured using many of

the same metrics as applied to player performance. We were
specifically interested in how much the companion poten-
tially interfered with the player, and so also measured the
time the companion spent in front of player during combat
(LS), the number of times the companion accidentally fired
at player, the number of times the player fired at the com-
panion, and the companion’s average distance to the player2.
By comparing player and the companion metrics it is possi-
ble to understand how the companion influenced the player’s
experience.

4. EXPERIMENTAL RESULTS
In order to evaluate the behaviours of the adaptive and the

non-controllable companions, different scenarios were de-
signed and implemented in our game prototype and analysed
through our metric suite. These scenarios were designed to
reflect different combat situations common to FPS games,
and were analyzed separately and in aggregation as a full
game level.

Figure 5 shows a top-down view of the overall level used
for most of the testing. The player and companion start at
the green dot and have to reach the magenta dot. The trace
overlay shows the output from a single simulation, where
the red and purple lines represents player and companion
movement respectively. The blue X’s show when the player
entered combat and the explosion marks indicate where an
enemy died. The black circles are where the companion and
player entered in collision. The white squares were the blue
goals (they turn white when collected).

The tests are presented in three parts. The first part fo-
cuses on comparing the companion’s influence on the player’s
game experience and performance. The second parts ex-
plore the usage of an adaptive companion for different player
skill levels. The third part compares our adaptive model
to a more classical approach to adaptivity, such as increas-
ing/decreasing fire power.

4.1 Scenarios
In order to compare the adaptive and base companion,

three core scenarios were developed within the context of a
full game level. These scenarios were inspired by common
components of level design found in AAA action games. Be-
low we present the different scenarios and their results. Note
that all scenarios are smaller parts of the full level (see Sec-
tion 4.1.3). Every scenario was run 20 times for each type
of companion, using a basic AI player to fulfil the role of the
human participant.

4.1.1 Cul-de-Sac Scenario
A major level-design feature in war games involves the use

of narrow, dead-end paths wherein the player finds a reward.
While common, this induces a basic problem for companion
AI: companions follow the player, but upon reaching the end
and turning around to continue on her quest, the player finds
her companion blocking the way out. A simple way to solve

2Note that for space reasons we cannot discuss all these
metrics in this work.

Table 1: Cul-de-Sac scenario results

Type Time (s.) LS (s.) PS (s.)

Base 24.9 ± 0.1 5.2 ± 0.1 7.7 ± 0.1
Adaptive 23.3 ± 0.1 4.1 ± 0.0 6.22 ± 0.0

Table 2: Pillars scenario results

Type Time (s.) PHE CHE R

Base 35.1 ± 4.0 83.1± 4.0 90.8 ± 4.1 0.3
Adaptive 30.3 ± 2.4 84.4 ± 3.5 86.7 ± 4.5 0.1

CHi PHi PK GI

78.6 ± 8.1 36.8 ± 9.9 3.8 ± 0.8 0.68 ± 0.1
72.6 ± 4.1 43.2 ± 5.2 3.2 ± 1.2 0.52 ± 0.1

this problem is to increase the distance the companion must
maintain to the player, but this requires limiting the depth
of such dead-ends to the follow-radius of the companion, and
can overly separate player from companion. The proposed
adaptive companion understands that when not in combat,
it should be out of the way when the player approaches. In
Figure 5, the yellow section represents the maze part of the
level. For this section, the player started at the entrance,
and then she had to reach a goal at the end, and then return
to the entrance.

Table 1 gives basic metric results from this scenario. It
is noticeable that gameplay with the adaptive companion
took less total time than with the base companion. This
is explained as the adaptive companion did not have to be
pushed by the player in order to move out of the way. The
adaptive companion also spent less time in the line of sight
(LS) of the player, as well as less time in the player’s personal
space (PS). We also note that in every simulation of this
level the base companion collided with the player, whereas
the adaptive companion did not.

4.1.2 Pillars Scenario
The Pillars scenario was developed to test the compan-

ion behaviour inside intense, obstacle-rich combat zones. In
Figure 5, the blue section represents the pillar scenario. The
room is filled with six enemies and pillars behind which the
player and other agents can hide or use as cover. This design
is standard in FPS/TPS for combat zones or boss fights.

Table 2 gives interesting metrics results for this scenario.
As with the cul-de-sac, the time taken by the adaptive com-
panion to finish the scenario was shorter, albeit with more
variance due to the randomness of combat resolution. In
this case game intensity caused the adaptive companion to
switch to a more aggressive behaviour, whereas the base
companion just acts normally. The participation ratio (R)
is closer to zero for the adaptive companion, showing a bet-
ter distribution of the combat load. As the adaptive com-
panion is more aggressive its successful hits (CHi) value was
slightly higher than the adaptive companion, which brought
the player number of hits down (PHi), although there was
less noticeable impact on number of player kills (PK). An
important overall result is that the average Game Intensity
(GI) was lower for the adaptive companion.

In general, the data shows that the adaptive agent was
able to reduce the intensity load on the player; this can be
seen in more detail in Figure 6, which shows game intensity
over time. The adaptive companion successfully dampens
the more intense sections of the level, where the base agent
does not evolve and does not help the player in accomplish-
ing difficult tasks.



Figure 5: Tested level

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

0.2

0.4

0.6

0.8

1

Base
Adaptive

Figure 6: Game Intensity over time (s.) for the
pillars scenario

Table 3: Level scenario results

Type Time (s.) PHE CHE R

Base 142.5 ± 8.8 63.5± 5.0 92.5 ± 6.9 0.31
Adaptive 131.9 ± 5.0 71.2 ± 3.9 83.3 ± 10.1 0.14

PHi CHi PK GI

238.7 ± 24.3 51.6 ± 24.9 8.55 ± 1.6 0.43 ± 0.1
182.7 ± 13.2 108.9 ± 14.1 6.8 ± 1.4 0.36 ± 0.1

4.1.3 Level Scenario
As a more complete test, we also composed the scenarios

into the full level shown in Figure 5. The AI player starts
from the green spot and has to reach the last goal where
there is a boss fight (magenta spot). This level was designed
to test the companion in a realistic game environment, incor-
porating a maze/cul-de-sac section, combat situations with
varying number of enemies and obstacle density, and a final
boss fight.

Table 3 gives metric result for this level scenario. Note

that variance is increased here in all factors, primarily due to
the non-determinism built into combat aiming and combat
positioning. Nevertheless, again gameplay with the adaptive
companion can be seen to be more efficient, reducing average
level completion time. Player hits (PHi) are higher with the
base companion than the adaptive one, showing that the
adaptive companion helps the player more than the base
companion. This is further shown in companion hits (CHi)
and player kills (PK), and also reflected in the health ratio
(R), which is closer to zero for the adaptive companion – the
adaptive companion worked harder and took more damage,
which resonates well with the last argument.

7 21 35 49 63 77 91 105 119

0

0.2

0.4

0.6

0.8

1

Base

Adaptive

Figure 7: Game Intensity over time (s.) for the level
scenario

Figure 7 shows the game intensity over time for this sce-
nario. At around 80 seconds, the adaptive companion started
using the aggressive behaviour, which caused the player to



experience less intensity in a shorter period of time. Over-
all the adaptive companion shows a better understanding of
the game situation in term of intensity. This understanding
has subtle differences in term of player and companion per-
formances, but this difference has an impact on the player’s
in-game experience.

4.2 Naive & Expert AI Player
The value of companion adaptivity can also be seen as a

means to help games adapt to different player skill levels. A
naive player will have weaker aim and be slower in complet-
ing a scenario than an expert player, and so player experi-
ence may be improved by a companion that can recognize
the need for intensity reduction and respond accordingly. In
this test we thus compare the impact of an adaptive com-
panion on a naive player with weak aim with its impact on
an expert player, using the same full level as above.

8 24 40 56 72 88 104 120 136 152

0

0.2

0.4

0.6

0.8

1

Base

Adaptive

Figure 8: Game Intensity over time (s.) for the
Naive AI player

For this particular test, the game intensity variability is
the most interesting metric to look at. The earlier Fig-
ure 7 shows the game intensity produced assuming an expert
player, while Figure 8 shows the game intensity data from
a naive skill level run. In both cases, and as expected, the
game intensity level for the AI player is lower when playing
with the adaptive companion than with the base compan-
ion. The naive player scenario does show dramatically larger
variance, but the impact of an adaptive companion results
in a better moderation of intensity. Note that this impact
is partly hidden by the way the intensity measure caps at
1.0; as the game proceeds, a naive player in conjunction
with the base companion reaches the highest intensity lev-
els, while gameplay with the adaptive companion is able to
offer some reduction. A further, interesting observation is
apparent in the shape of the curves from about 90s onward
in Figure 8. At this point, the base companion is essentially
unable to help the naive player, resulting in a continuously
intensive latter third of gameplay, with no calmer periods.
This highly stressful gameplay is in contrast to the results
shown with our adaptive companion, which at least partially
restores the intended, natural up-and-down pace to the level,
producing a series of peaks and values much more similar to
that experienced by an expert player.

In general, the adaptive model is more successful at help-
ing a player adapt to subtle differences in difficulty. These
sorts of differences happen when a player is not paying atten-

tion to the game or is learning a new game mechanic [14]. Of
course stronger and more universally aggressive companions
would also reduce intensity, although that brings concerns
of over-trivializing gameplay, which is also not the goal of
commercial computer games. The companion adaptivity is
there to tweak the difficulty of the game to give a better
experience to the player.

4.3 Comparison to DDA
Adaptivity within games is most frequently and easily ex-

pressed through some form of dynamic difficulty adjustment
based on uniformly increasing or decreasing enemy or player
power. We thus compare our design with a basic DDA. The
DDA system uses the same structure as the proposed model
in Section 3.3.4, but modifying only companion fire power
according to the game intensity—the higher the intensity
the stronger its fire power. Note that as this paper is in-
terested in adaptive companions, fire power adaptivity was
given to the companion only. This particular companion will
be denoted DDA companion, and an intensity graph for a
naive player with a DDA companion, an adaptive compan-
ion, and a hybrid DDA-adaptive companion (including both
behaviours) is shown in Figure 9.

8 24 40 56 72 88 104 120 136

0

0.2

0.4

0.6

0.8

1

DDA

Adaptive Companion

DDA + Adaptive Companion

Figure 9: Game Intensity over time (s.) for the
naive AI player with adaptive companion and DDA
companion

Much like the adaptive, as the DDA companion is given
more fire power it takes less time on average to finish the
level, slightly compressing the intensity curve over the time
axis (and so peaks/valleys line up less well). It is clear
that improving fire power has a large impact, and is also
able to recover a sinusoidal fluctuations in intensity for the
naive player. The hybrid form, however, shows a consis-
tent, further mitigation of intensity, and this leads to the
thought that there is an orthogonality between the adaptive
companion controlling the game intensity and a more clas-
sic form of adaptivity. An appropriate combination of the
two techniques may thus enable the reduction in intensity
of naive play to reach the expert levels, and result in a more
uniform game experience. This additional impact must of
course be measured in relation to the known drawbacks of
DDA, in that letting players witness dynamic adjustments
that grossly exceed their own abilities or contradict previous
experience break immersion. In this sense our adaptive com-
panion provides a much more contextually integrated form
of adjustment.



5. RELATED WORK
There are multiple formalisms to use when it comes to

building an intelligent agent. We make use of a Behaviour
Tree (BT) formalism, as one that has gained ground in the
game industry [8]. A BT is a tree structure formalism that
uses depth-first search combined with an execution model
for individual tree nodes. Each node is considered a task
and when evaluated returns true or false. The tree evalu-
ation stops when the root node returns true or false. The
behaviour of internal nodes is based on the output func-
tion of their children, where external nodes, leafs or ac-
tions/conditions provide or test basic game operations [3].
As a caveat, the formalism is not well defined in the industry
and hacks are done in order to accomplish certain function,
such as hiding parts of the tree [8].

Game adaptivity can be applied to multiple facets of the
game: difficulty, agent tactics, player companionship, etc.
One simple technique that is often used in game design is
negative feedback [13], which may be applied in a video game
to, for example, reduce the gap between two players’ scores
or other attributes. This is achievable by giving a propor-
tional bonus to the player with the lowest score.

In general, the standard approach to DDA is to monitor
the player, and based on the observations make decisions on
how to improve the game experience, apply the changes, and
repeat [9]. Hunicke [7] was interested in building an adaptive
system for a level in the FPS Half-life. She argues that the
dynamic economic system from the player to the game can
be controlled in order to produce smooth adaptivity. Ocio
[12] used adaptive behaviour trees to change the order of ac-
tion nodes based on in-game knowledge. This tree was then
used to build levels tailored to the player. Their goal was to
accommodate casual players by decreasing the difficulty.

The focus of companion adaptivity research has been to-
wards understanding the player’s actions or improving per-
formance. Macindoe et al. [10] use a POMDP model game
structure to develop a companion that understands how its
actions influence human intentions in puzzle games. This
kind of reasoning enables the companion to interact indi-
rectly with the player and thus solve game puzzles. Tan
and Cheng [15] proposed a neural network approach to im-
prove survival chances of a group of NPCs and a player in
an apocalyptic zombie world. By adapting action selections
based on previous outcomes, their system demonstrated an
approach that was more efficient in terms of survival than
pre-scripted behaviour.

6. CONCLUSIONS AND FUTURE WORK
Modern computer games rely on companion agents to help

the player accomplish in-game challenges and create deeper
narratives. Nevertheless, this introduction brings new prob-
lems such as the companion breaking the player’s experience
by not respecting the player’s intentions and gaming style.

We presented an adaptive model for real-time compan-
ions that takes the player’s game experience into considera-
tion when making decisions. We showed that this particular
model was able to temper the player’s game intensity level
when compared to a non-adaptive companion. We demon-
strated that the effect is similar in scale to the use of a more
traditional approach to adaptivity based on dynamic diffi-
culty adjustment, but has additional advantages in being
both orthogonal to DDA, and of allowing for better narra-

tive justification of any adaptivity.
A simple extension of this work would be to apply it to

behavioural adaptivity of enemies. Further work is also pos-
sible in developing an adaptive companion that takes into
consideration the full complexity of resource management.
Finally, player action recognition should be explored, as this
would allow the companion to understand and potentially
assist with the higher-level actions the player is attempt-
ing.

7. ACKNOWLEDGEMENTS
This research was supported by the Fonds de recherche du

Québec - Nature et technologies, and the Natural Sciences
and Engineering Research Council of Canada.

8. REFERENCES
[1] M. Ashton and C. Verbrugge. Measuring Cooperative

Gameplay Pacing in World of Warcraft. FDG, pages
77–83, 2011.

[2] S. Bakkes, P. Spronck, and E. O. Postma.
Best-response Learning of Team Behaviour in Quake
III. In Workshop on Reasoning, Representation, and
Learning in Computer Games, pages 13–18, 2005.

[3] M. Booth. The AI systems of Left 4 Dead. Keynote
presentation at AIIDE, 2009.

[4] J. Chen. Flow in Games (and Everything Else).
Commun. ACM, pages 31–34, 2007.

[5] B. Crecente. Fable 2’s Big Thing: A Pet Dog, 2007.
http://kotaku.com/241952/

fable-2s-big-thing-a-pet-dog-update.

[6] M. Hughes. The Elder Scrolls V: Skyrim followers
guide, 2011. http://www.gamesradar.com/
elder-scrolls-v-skyrim-followers-guide/.

[7] R. Hunicke. The Case for Dynamic Difficulty
Adjustment in Games. ACE, pages 429–433, 2005.

[8] D. Isla. GDC 2005 Proceeding: Handling Complexity
in the Halo 2 AI.
http://www.gamasutra.com/view/feature/130663/

gdc_2005_proceeding_handling_.php, 2005.

[9] R. Lopes and R. Bidarra. Adaptivity Challenges in
Games and Simulations: A Survey. CIG, pages
83–108, 2011.

[10] O. Macindoe, L. P. Kaelbling, and T. Lozano-Pérez.
Pomcop: Belief space planning for sidekicks in
cooperative games. In AIIDE, 2012.

[11] I. Millington and J. Funge. Artificial Intelligence for
Games. Morgan Kaufmann, second edition, 2009.

[12] S. Ocio. Adapting AI Behaviors To Players in Driver
San Francisco: Hinted-Execution Behavior Trees. In
AIIDE, 2012.

[13] K. Salen and E. Zimmerman. Rules of Play: Game
Design Fundamentals. The MIT Press, 2003.

[14] J. Schell. The Art of Game Design a Book of Lenses.
Elsevier/Morgan Kaufmann, 2008.

[15] C. T. Tan and H.-L. Cheng. Personality-based
Adaptation for Teamwork in Game Agents. In AIIDE,
pages 37–42, 2007.


